Search results for "effective field theory: nonrelativistic"

showing 2 items of 2 documents

Effective Field Theories for heavy probes in a hot QCD plasma and in the early universe

2016

International audience; There are many interesting problems in heavy-ion collisions and in cosmology that involve the interaction of a heavy particle with a medium. An example is the dissociation of heavy quarkonium seen in heavy-ion collisions. This was believed to be due to the screening of chromoelectric fields that prevents the heavy quarks from binding, however in the last years several perturbative and lattice computations have pointed out to the possibility that dissociation is due to the finite lifetime of a quarkonium state inside the medium. Regarding cosmology, the study of the behavior of heavy Majorana neutrinos in a hot medium is important to understand if this model can expla…

Quarkcosmological modelParticle physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]QC1-999Populationdissociationquantum chromodynamics: plasma01 natural sciences7. Clean energydark matterCosmologythermalquarkonium: heavyBaryon asymmetryparticle: heavy0103 physical sciencesquantum chromodynamicseffective field theoriesheavy quarkNuclear Experiment010306 general physicseducationMajorana neutrinoslatticeeffective field theory: nonrelativisticQuantum chromodynamicsPhysicseducation.field_of_studyquantum chromodynamics: nonrelativisticquarkonium suppressionta114010308 nuclear & particles physicsPhysicsscreeningquarkonium: suppressionHigh Energy Physics::PhenomenologychromoelectricQuarkoniumheavy ionMAJORANAresummation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]baryon: asymmetryneutrino: Majoranaquarkonium: lifetimeNeutrinoQuark Confinement and the Hadron Spectrum
researchProduct

Effective field theory search for high-energy nuclear recoils using the XENON100 dark matter detector

2017

International audience; We report on weakly interacting massive particles (WIMPs) search results in the XENON100 detector using a nonrelativistic effective field theory approach. The data from science run II (34  kg×224.6 live days) were reanalyzed, with an increased recoil energy interval compared to previous analyses, ranging from (6.6–240)  keVnr. The data are found to be compatible with the background-only hypothesis. We present 90% confidence level exclusion limits on the coupling constants of WIMP-nucleon effective operators using a binned profile likelihood method. We also consider the case of inelastic WIMP scattering, where incident WIMPs may up-scatter to a higher mass state, and …

WIMP nucleon: scatteringParticle physicsdata analysis methodCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsWIMP[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Dark matterchemistry.chemical_elementFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesNuclear physicsXENONXenonWIMPstatistical analysis0103 physical sciencesEffective field theoryDark Matter010306 general physicsS030UDMnucleus: recoilPhysicsCoupling constanteffective field theory: nonrelativistic010308 nuclear & particles physicsScatteringDetectorAstrophysics::Instrumentation and Methods for Astrophysicsdark matter: detectorchemistryWeakly interacting massive particlesDirect SearchHigh Energy Physics::ExperimentTPC[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]recoil: energyAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct